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The synthesis of optically active amines is of considerable 
interest due to the presence of such compounds in natural products 
and in other molecules which manifest interesting biological 
activities. Recently, we demonstrated the highly enantioselective 
hydrogenation of imines1 and unfunctionalized trisubstituted 
olefins2 using I.3 While the enantioselective hydrogenation of 
enamides4 has been successfully effected using ruthenium5 and 
rhodium catalysts6 the corresponding reduction of enamines, to 
our knowledge, has not been reported. In this communication, 
we describe the first enantioselective, catalytic hydrogenation of 
1,1-disubstituted enamines. 

The active catalyst employed in our study is generated by the 
addition of 2 equivof H-BuLi followed by 2.5 equiv of phenylsilane 
to a solution of 1 in THF under a hydrogen atmosphere. The 
hydrogenation reactions were conducted either at room tem­
perature and 1 atm H2 (Table 1, entries 1-4) or at 65 0C and 
80 psig (Table 1, entries 5-9) for ~24 h (Scheme 1). The fact 
that these substrates are hydrogenated under considerably milder 
conditions than those utilized for trisubstituted olefins is presum­
ably due to the faster rate of insertion of a 1,1 -disubstituted olefin 
into the Ti-H bond.7 

As is shown in Table 1,1,1 -disubstituted enamines are reduced 
to the corresponding tertiary amines with high enantiomeric 
excesses. Changing the substituents on the nitrogen or on the 
aromatic ring had little effect on the enantioselectivity. Of note 
is that the enantioselectivity of the reaction is independent of 
hydrogen pressure. For example, l-(l-pyrrolidinyl)-l-(4-meth-
oxyphenyl)ethene (entry 2) was reduced under the following 
conditions: 2000 psig, 65 0C; 80 psig, 65 0C; 80 psig, room 
temperature; and 15 psi, room temperature. In all cases, the 
product obtained had an enantiomeric excess of ~94%. This 
result is in stark constrast to that seen for the hydrogenation of 
acyclic imines.18 

Not surprisingly, the hydrogenation reaction is sensitive to the 
sterics of the substrate; as the bulk of the double-bond substituents 
was increased (entries 5-9), higher pressures (80 psig) and 
temperatures (65 0C) were required to obtain reasonable reaction 
rates. When a more sterically demanding substrate, the pyrrol-
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• Reactions were run using 5 mole % (SAS)-(EBTHI)Ti02Binap (1) 
as the catalyst. * Units of pressure: 15 psi and 80 psig.c Yields of isolated 
materials (>95% pure); all products were characterized by 1H NMR, 
13C NMR, HRMS, and IR spectroscopy. d The enantiomeric excess for 
the amines were determined by 1H NMR analysis of diastereomeric salt 
resulting from the addition of (R)- or (S')-O-acetylmandelic acid to the 
amine in CDCU.14'15«Determined by optical rotation to be the (R) 
enantiomer. 
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idine enamine of pinacolone, was employed, only unreacted 
starting material was recovered.8 

An additional limitation of the reaction is that the catalyst 
system, in its present form, does not tolerate aromatic bromides. 
For example, when 1 -pyrrolidinyl-1 -(4-bromophenyl)ethene was 
subjected to the usual reaction conditions, mostly unreacted 
starting material was recovered along with a small amount of 
debrominated enamine. This presumably occurs via reduction 
of aryl bromides by titanium(III) hydride, as has been previously 
suggested.9 

As previously postulated, titanium(III) hydride 2 is believed 
to be the active catalyst. According to the analysis of the molecular 
orbitals of Cp2MH by Hoffmann and Lauher,10 the olefin is 
believed to approach the Ti-H complex from the side (see Scheme 
2) to obtain maximum overlap between the LUMO of the olefin 

(8) Conditions used: 80 psig, 65 0C, 7 days. 
(9) Corriu, R.; Colomer, E. J. Organomet. Chem. 1974, 82, 367. 
(10) (a) Lauher, J. W.; Hoffmann, R. / . Am. Chem. Soc. 1976,98,1729. 

(b) Waymouth, R.; Pino, P. J. Am. Chem. Soc. 1990, 112, 4911. (c) 
Willoughby, C. A.; Buchwald, S. L., manuscript in preparation (a more 
thorough discussion of the proposed mechanism will be presented in this paper). 
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and the HOMO of the metal hydride. In this approach, the 
phenyl group of the substrate is twisted out of conjugation with 
the olefin, whereas the nitrogen's lone pair remains conjugated 
with the olefin.11 The difference between the two approaches of 
the substrate can be seen more clearly from a top view, as shown 
in Scheme 3. The larger group, the A .̂iV-dialkyl substituent, 
prefers to approach the complex as in A, which minimizes the 
interaction between the cyclohexyl portion of the tetrahydro-
indenyl ligand and the alkyl groups on the nitrogen. In B, the 
alkyl groups on the nitrogen are forced to interact with the 
tetrahydroindenyl moiety as the substrate approaches the catalyst. 
Reaction via A is consistent with our experimental result, in which 
(.R)-amine is produced when (S,S,S)-1 catalyst is used.12 

In summary, we have described the first catalytic asymmetric 

(11) Burger, B. J.; Santarsiero, B. D.; Trimmer, M. S.; Bercaw, J. E. J. 
Am. Chem. Soc. 198«, 110, 3134. 
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reduction of enamines. The reaction represents a new method 
to produce highly enantiomerically enriched tertiary amines from 
ketones in good yields. We are currently examining the extension 
of this methodology for the hydrogenation of a variety of different 
classes of enamines and related substrates. 
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